Search for collections on Repository Universitas Sulawesi Barat

JEMURAN PAKAIAN OTOMATIS MENGGUNAKAN SENSOR RAINDROP DENGAN INDIKATOR KONDISI CUACA BERBASIS Internet Of Thing (IOT) AUTOMATIC CLOTHES DRYER USING RAINDROP SENSOR WITH WEATHER CONDITION INDICATOR BASED ON Internet Of Thing (IOT)

IRDAWATI, IRDAWATI (2025) JEMURAN PAKAIAN OTOMATIS MENGGUNAKAN SENSOR RAINDROP DENGAN INDIKATOR KONDISI CUACA BERBASIS Internet Of Thing (IOT) AUTOMATIC CLOTHES DRYER USING RAINDROP SENSOR WITH WEATHER CONDITION INDICATOR BASED ON Internet Of Thing (IOT). Diploma thesis, Universitas Sulawesi Barat.

[thumbnail of IRDAWATI.pdf] Text
IRDAWATI.pdf
Restricted to Repository staff only until 28 May 2027.

Download (2MB)
[thumbnail of IRDAWATI (pdf.io).pdf] Text
IRDAWATI (pdf.io).pdf

Download (762kB)

Abstract

Penelitian ini bertujuan untuk mengintegrasikan indikator kondisi cuaca berbasis Internet of Things (IoT) dalam sistem jemuran pakaian otomatis menggunakan sensor raindrop. Sistem ini dirancang untuk mengatasi permasalahan pengeringan pakaian yang terganggu oleh perubahan cuaca yang tidak terprediksi, sehingga dapat mengotomatisasi proses penjemuran berdasarkan kondisi cuaca secara realtime. Penelitian ini menggunakan pendekatan pengembangan prototipe yang melibatkan perancangan, pengembangan, dan pengujian sistem. Sistem terdiri dari
sensor LDR untuk deteksi intensitas cahaya, sensor raindrop untuk deteksi hujan, motor stepper sebagai penggerak mekanis jemuran, mikrokontroler ESP32 dengan konektivitas WiFi, dan sistem monitoring melalui Telegram Bot. Pengujian dilakukan secara sistematis meliputi pengujian individual setiap komponen dan pengujian black box untuk mengevaluasi fungsionalitas sistem secara keseluruhan. Sistem jemuran pakaian otomatis berbasis IoT berhasil dikembangkan dengan performa optimal. Sensor LDR menunjukkan konsistensi pembacaan yang baik
dengan threshold > 1002 untuk kondisi cerah, 308 untuk kondisi mendung, dan < 50 untuk kondisi gelap. Sensor hujan memiliki waktu respon 0.8 detik dengan tingkat akurasi deteksi yang konsisten. Motor stepper dapat beroperasi stabil dengan waktu operasi 0.14±0.12 detik. Sistem IoT menunjukkan tingkat keberhasilan data 92%, dan jangkauan sinyal 185 meter. Pengujian black box memvalidasi bahwa seluruh fungsi sistem bekerja sesuai spesifikasi, termasuk deteksi perubahan cuaca, kontrol otomatis jemuran, notifikasi real-time melalui Telegram, dan kontrol manual jarak jauh. Sistem terbukti mampu beroperasi secara otomatis dan andal dalam menangani proses penjemuran pakaian berdasarkan kondisi cuaca.
This study aims to integrate weather condition indicators based on the Internet of Things (IoT) in an automatic clothes drying system using a raindrop sensor. This system is designed to overcome the problem of clothes drying that is disrupted by unpredictable weather changes, so that it can automate the drying process based on weather conditions in real-time. This study uses a prototype development approach that involves system design, development, and testing. The system consists of an LDR sensor for light intensity detection, a raindrop sensor for rain detection, a stepper motor as a mechanical clothesline driver, an ESP32 microcontroller with WiFi connectivity, and a monitoring system via Telegram Bot. Testing is carried out systematically including individual testing of each component and black box testing to evaluate the overall system functionality. The IoT-based automatic clothes drying system was successfully developed with optimal performance. The LDR sensor shows good reading consistency with a threshold of > 1002 for sunny conditions, 308 for cloudy conditions, and < 50 for dark conditions. The rain sensor has a response time of 0.8 seconds with a consistent level of detection accuracy. The stepper motor can operate stably with an operating time of 0.14±0.12 seconds. The IoT system demonstrated a data success rate of 92%, and a signal range of 185 meters. Black box testing validated that all system functions worked as specified, including weather change detection, automatic clothesline control, real-time notification via Telegram, and remote manual control. The system was proven to be able to operate automatically and reliably in handling the clothes drying process based on weather conditions

Item Type: Thesis (Diploma)
Uncontrolled Keywords: Jemuran otomatis, Internet of Things, Sensor LDR, Sensor raindrop, Telegram Bot, Motor Stepper Automatic clothesline, Internet of Things, LDR Sensor, Raindrop sensor, Telegram Bot, stepper Motor
Subjects: FAKULTAS TEKNIK > Informatika
Divisions: Fakultas Teknik
Depositing User: Chaeril Anwar
Date Deposited: 10 Dec 2025 05:06
Last Modified: 10 Dec 2025 05:06
URI: https://repository.unsulbar.ac.id/id/eprint/2482

Actions (login required)

View Item
View Item