Search for collections on Repository Universitas Sulawesi Barat

SISTEM PENILAIAN ESAI OTOMATIS MENGGUNAKAN SEMANTIC TEXT SIMILARITY Automated Essay Grading System Using Semantic Text Similarity

NURSYALINDA, NURSYALINDA (2025) SISTEM PENILAIAN ESAI OTOMATIS MENGGUNAKAN SEMANTIC TEXT SIMILARITY Automated Essay Grading System Using Semantic Text Similarity. Diploma thesis, UNIVERSITAS SULAWESI BARAT.

[thumbnail of NURSYALINDA1.pdf] Text
NURSYALINDA1.pdf
Restricted to Repository staff only

Download (2MB)
[thumbnail of NURSYALINDA1 (pdf.io).pdf] Text
NURSYALINDA1 (pdf.io).pdf

Download (1MB)

Abstract

Penilaian esai merupakan aspek krusial dalam pendidikan, namun seringkali menghadapi tantangan objektivitas dan efisiensi saat dilakukan secara manual. Penelitian ini mengusulkan pengembangan sistem penilaian esai otomatis menggunakan pendekatan Latent Semantic Analysis (LSA) yang terdiri dari Document Term Matrix (DTM) dan Singular Value Decomposition (SVD), serta metode Cosine Similarity. Tujuan utama penelitian ini adalah memvalidasi fungsionalitas sistem dalam memproses, menganalisis, dan memberikan penilaian grade otomatis. Data yang digunakan meliputi 10 jawaban esai responden dan satu set jawaban referensi. Proses pengujian dimulai dengan prapemrosesan data, dilanjutkan dengan pembentukan DTM untuk merepresentasikan esai dalam bentuknumerik. Selanjutnya, SVD diterapkan untuk mereduksi dimensi DTM, mengekstraksi konsep semantik laten, dan meningkatkan representasi dokumen dalam ruang topik. Tahap inti adalah perhitungan Cosine Similarity antara setiap jawaban responden dengan jawaban referensi, mengukur kemiripan semantik antardokumen. Berdasarkan nilai cosine similarity yang diperoleh, sistem secara fungsional mengonversi nilai tersebut menjadi grade A, B, C, D, atau E menggunakan ambang batas yang telah ditentukan. Hasil pengujian menunjukkan bahwa sistem berhasil melaksanakan setiap tahapan proses secara fungsional, dari
prapemrosesan hingga penentuan grade. Misalnya, responden dengan cosine similarity tinggi (0.92915102 dan 0.99993911) secara konsisten mendapatkan grade tinggi, sementara responden dengan cosine similarity rendah (0.07950787) mendapatkan grade rendah. Ini membuktikan kapabilitas fungsional sistem dalam memberikan penilaian otomatis berdasarkan kedekatan semantik dengan jawaban referensi. Meskipun berfokus pada fungsionalitas, sistem ini menunjukkan potensi besar sebagai alat bantu penilaian yang objektif dan efisien.
Essay grading is a crucial aspect of education, yet it often faces challenges regarding objectivity and efficiency when conducted manually. This research proposes the development of an automated essay grading system utilizing a Latent Semantic Analysis (LSA) approach, comprising Document Term Matrix (DTM) and Singular Value Decomposition (SVD), along with the Cosine Similarity method. The
primary objective of this study is to validate the system's functionality in processing, analyzing, and assigning automated grades. The data used consists of 10 essay responses from various respondents and a set of reference answers. The testing process begins with data preprocessing, followed by the formation of a DTM to numerically represent the essays. Subsequently, SVD is applied to reduce the DTM's
dimensionality, extract latent semantic concepts, and enhance document representation in a topic space. The core stage involves calculating the Cosine Similarity between each respondent's answer and the reference answer, measuring the semantic similarity between the documents. Based on the obtained cosine similarity values, the system functionally converts these values into grades A, B, C, D, or E using predefined thresholds. Test results indicate that the system successfully performs each process stage functionally, from preprocessing to grade determination. For instance, respondents with high cosine similarity (0.92915102 and 0.99993911) consistently received high grades, whereas respondents with low cosine similarity (0.07950787) received low grades. This demonstrates the system's functional capability in providing automated assessments based on semantic proximity to reference answers. Although focused on functionality, this system shows significant potential as an objective and efficient grading tool.

Item Type: Thesis (Diploma)
Uncontrolled Keywords: Penilaian Esai Otomatis, Latent Semantic Analysis (LSA), Document Term Matrix (DTM), Singular Value Decomposition (SVD), Cosine Similarity, Semantic Text Similarity. Automated Essay Grading, Latent Semantic Analysis (LSA), Document Term Matrix (DTM), Singular Value Decomposition (SVD), Cosine Similarity, Semantic Text Similarity.
Subjects: FAKULTAS TEKNIK > Informatika
Divisions: Fakultas Teknik
Depositing User: Unnamed user with email aryatiunsulbar@gmail.com
Date Deposited: 23 Jul 2025 02:50
Last Modified: 23 Jul 2025 02:50
URI: https://repository.unsulbar.ac.id/id/eprint/2142

Actions (login required)

View Item
View Item