Search for collections on Repository Universitas Sulawesi Barat

IMPLEMENTASI ALGORITMA CONSTRAINED K-MEANS DALAM SISTEM ZONASI SEKOLAH UNTUK OPTIMASI PENERIMAAN PESERTA DIDIK BARU IMPLEMENTATION OF CONSTRAINED K-MEANS ALGORITHM IN SCHOOL ZONING SYSTEM TO OPTIMIZE NEW STUDENT ADMISSION

WIWI LESTIANI, WIWI LESTIANI (2025) IMPLEMENTASI ALGORITMA CONSTRAINED K-MEANS DALAM SISTEM ZONASI SEKOLAH UNTUK OPTIMASI PENERIMAAN PESERTA DIDIK BARU IMPLEMENTATION OF CONSTRAINED K-MEANS ALGORITHM IN SCHOOL ZONING SYSTEM TO OPTIMIZE NEW STUDENT ADMISSION. Diploma thesis, UNIVERSITAS SULAWESI BARAT.

[thumbnail of skripsiiiii wiwi.pdf] Text
skripsiiiii wiwi.pdf
Restricted to Repository staff only

Download (3MB)
[thumbnail of skripsiiiii wiwi (pdf.io).pdf] Text
skripsiiiii wiwi (pdf.io).pdf

Download (1MB)

Abstract

Penerimaan Peserta Didik Baru (PPDB) merupakan proses penting dalam sistem pendidikan Indonesia. Untuk meningkatkan pemerataan akses pendidikan, pemerintah menerapkan sistem zonasi yang mengharuskan calon siswa memilih sekolah terdekat dari tempat tinggal. Namun, implementasinya masih menghadapi tantangan, seperti ketimpangan distribusi siswa dan kurangnya metode zonasi yang optimal. Penelitian ini bertujuan mengatasi masalah tersebut dengan menerapkan algoritma Constrained K-Means pada sistem zonasi sekolah dasar di Kabupaten
Majene. Dataset yang digunakan terdiri dari 28 lokasi sekolah dan 1.220 data lokasi siswa. Constrained K-Means diterapkan untuk mengelompokkan siswa berdasarkan jarak geografis dengan mempertimbangkan kapasitas tiap sekolah. Nilai k ditentukan berdasarkan jumlah sekolah, dan penyusunan anggota tiap klaster disesuaikan dengan kapasitas sekolah menggunakan pendekatan Linear Programming Algorithm (LPA). Jarak antara siswa dan sekolah dihitung menggunakan metode Euclidean Distance, sedangkan evaluasi kualitas klasterisasi
dilakukan menggunakan Davies-Bouldin Index (DBI). Hasil penelitian menunjukkan bahwa metode ini mampu mengoptimalkan distribusi siswa ke dalam 28 sekolah dengan jumlah siswa yang hampir merata sesuai kapasitas. Nilai DBI sebesar 1,6683 menunjukkan bahwa pemisahan antar-klaster cukup baik dan distribusi tergolong optimal. Sistem ini memberikan solusi yang lebih efisien, adil, dan berbasis data untuk kebijakan zonasi. Ke depan, sistem ini dapat dikembangkan dengan integrasi web berbasis peta interaktif guna mendukung transparansi dan evaluasi berkala. Penelitian ini diharapkan dapat menjadi acuan bagi pemerintah daerah dalam merancang kebijakan zonasi yang lebih tepat sasaran, mendorong pemerataan pendidikan, dan mengurangi kesenjangan antar sekolah.
Student Admission (PPDB) is an important process in Indonesia’s education system. To promote equal access to education, the government
implements a zoning system that requires prospective students to choose the school closest to their residence. However, its implementation still faces challenges such as uneven student distribution and the lack of an optimal zoning method. This study
aims to address these issues by applying the Constrained K-Means algorithm to the elementary school zoning system in Majene Regency. The dataset used consists of 28 school locations and 1.220 student location data points. Constrained K-Means is applied to cluster students based on their geographic distance to schools while considering each school's capacity. The value of k is determined by the number of
schools, and the assignment of students to clusters is adjusted according to school capacities using the Linear Programming Algorithm (LPA). The distance between students and schools is calculated using the Euclidean Distance method, while the quality of clustering is evaluated using the Davies-Bouldin Index (DBI). The results show that this method successfully optimizes student distribution across 28 schools, with a nearly equal number of students per school according to their capacities. The obtained DBI score of 1,6683 indicates that the separation between clusters is sufficiently good and the distribution is optimal. This system offers a more efficient, equitable, and data-driven approach to zoning policy. In the future, this system can be further developed by integrating a web-based platform with interactive map visualizations to support transparency and routine policy evaluation. This study is expected to serve as a reference for local governments in designing more accurate zoning policies, promoting educational equity, and reducing disparities between schools.

Item Type: Thesis (Diploma)
Uncontrolled Keywords: Penerimaan Peserta Didik Baru, Sistem Zonasi Sekolah, Klasterisasi, Constrained K-Means, Davies-Bouldin Indeks. Student Admission, School Zoning System, Clustering, Constrained KMeans, Davies-Bouldin Index.
Subjects: FAKULTAS TEKNIK > Informatika
Divisions: Fakultas Teknik
Depositing User: Unnamed user with email aryatiunsulbar@gmail.com
Date Deposited: 27 Jun 2025 04:55
Last Modified: 27 Jun 2025 04:55
URI: https://repository.unsulbar.ac.id/id/eprint/1992

Actions (login required)

View Item
View Item